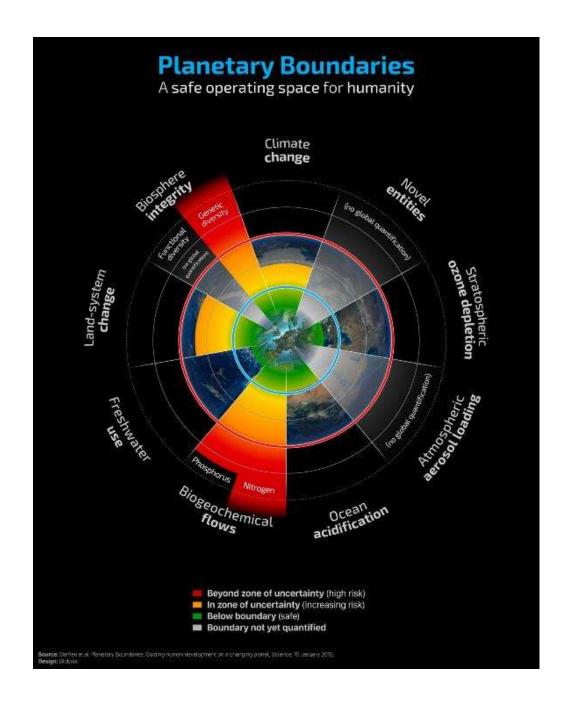


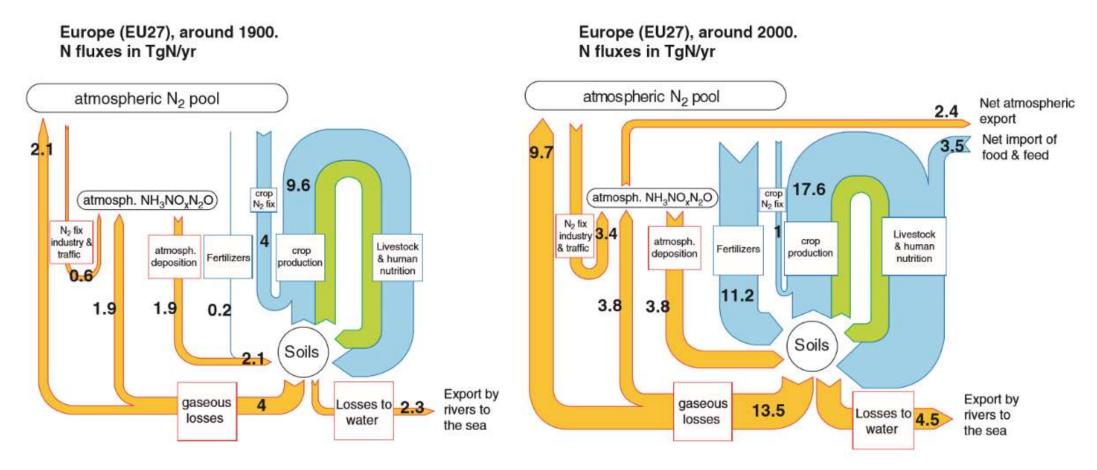
The challenge of increasing legume production on European farms

Donal Murphy-Bokern

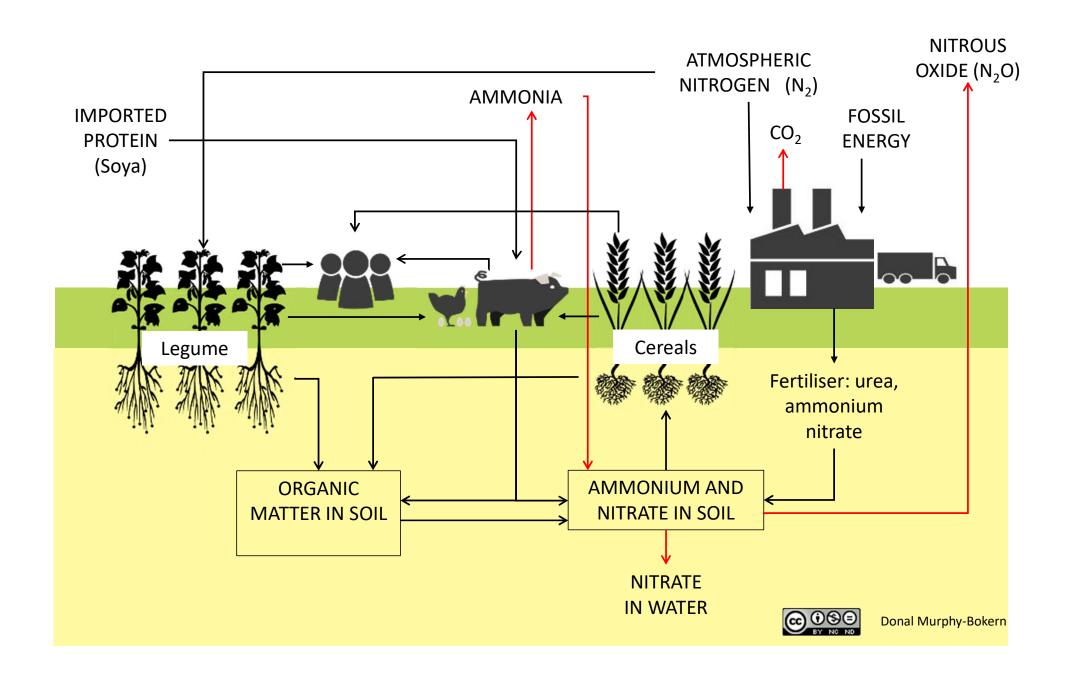
Global Bean Network public meeting

2 September 2025




"How we eat determines, to a considerable extent, how the world is used"

Wendell Berry



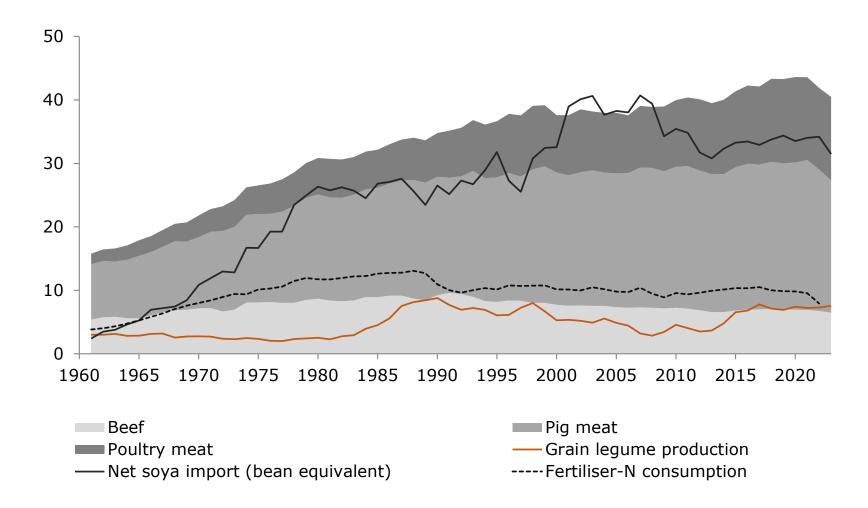
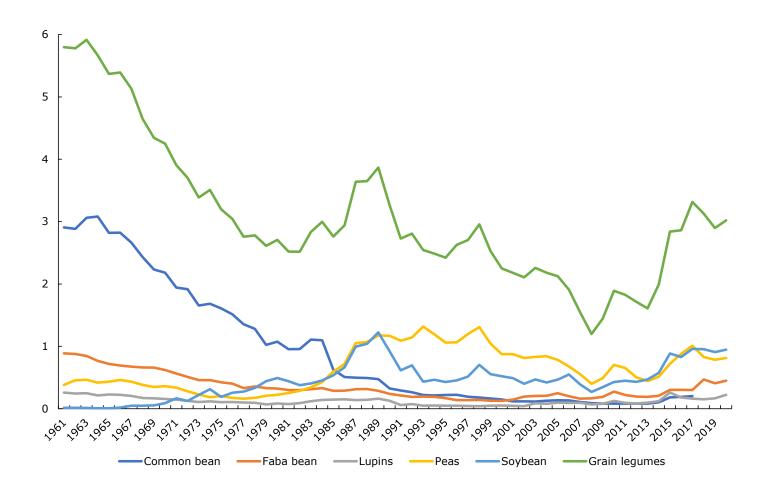
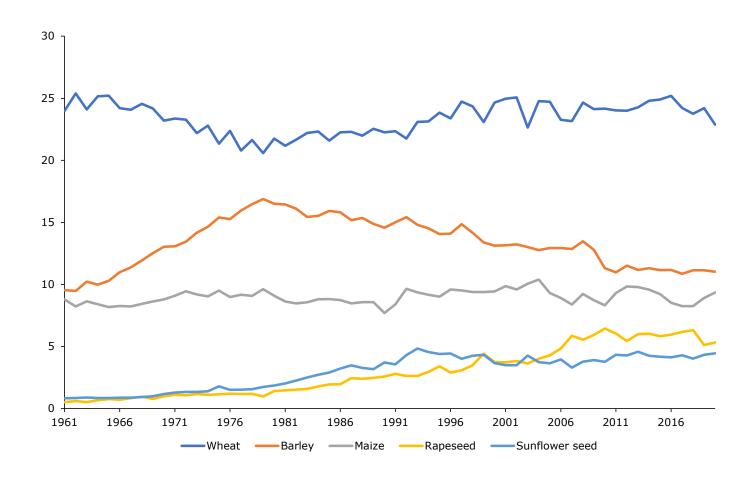


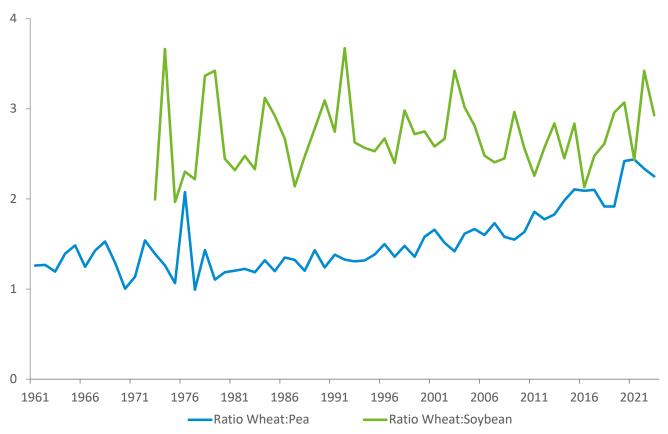
Figure SPM.3 Simplified comparison of the European nitrogen cycle (EU-27) between 1900 and 2000. Blue arrows show intended anthropogenic nitrogen flows; orange arrows show unintended nitrogen flows; green arrows represent the nearly closed nitrogen cycle of natural terrestrial systems [16.4 and 16 supplementary material].


Sutton and van Grinsven, 2011. European Nitrogen Assessment


. Changes (million tonnes) in the production of livestock products, net imports of soya, grain legume (protein crops) and the use of fertiliser nitrogen in the European Union 1961-2023.

. Changes (million ha) in the production grain legumes in the European Union 1961-2020.

. Changes (million ha) in the production cereals and oilseeds in the European Union 1961-2020.

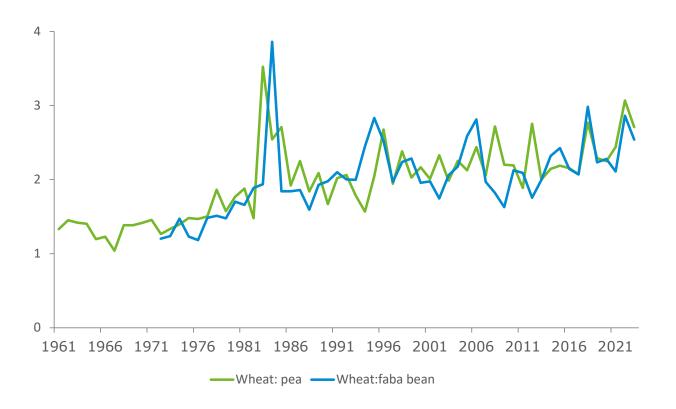


Changes in the average grain yield (t/ha) of wheat, pea and soybean in France, 1961 to 2023

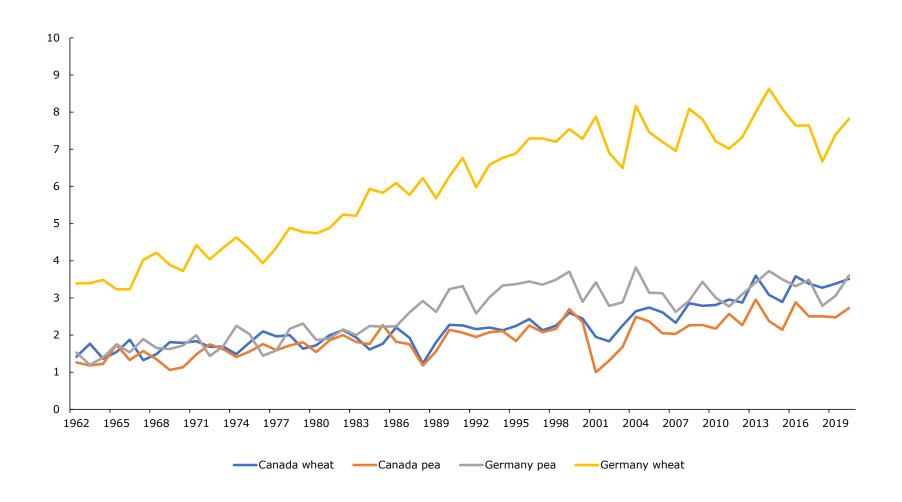


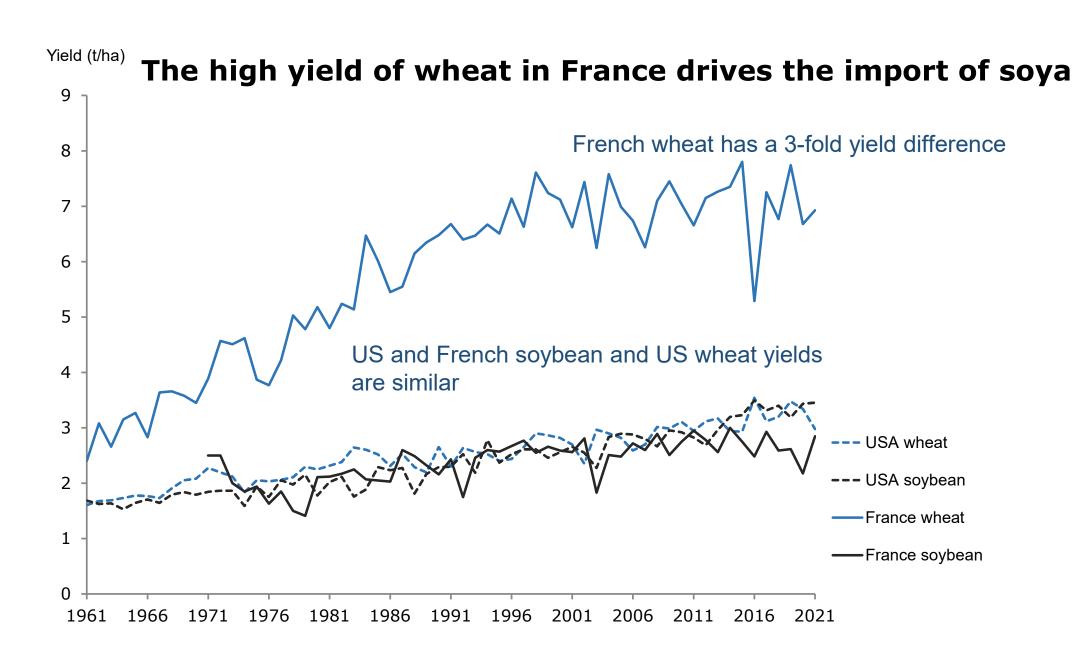
Changes in the ratio of wheat yield to the yield of pea and soybean in France, 1961 to 2023

The competitiveness of wheat has increased from about 1.3 tonnes to about 2.0 tonnes per tonne pea. It has remain steady at about 2.7 t wheat per t soybean



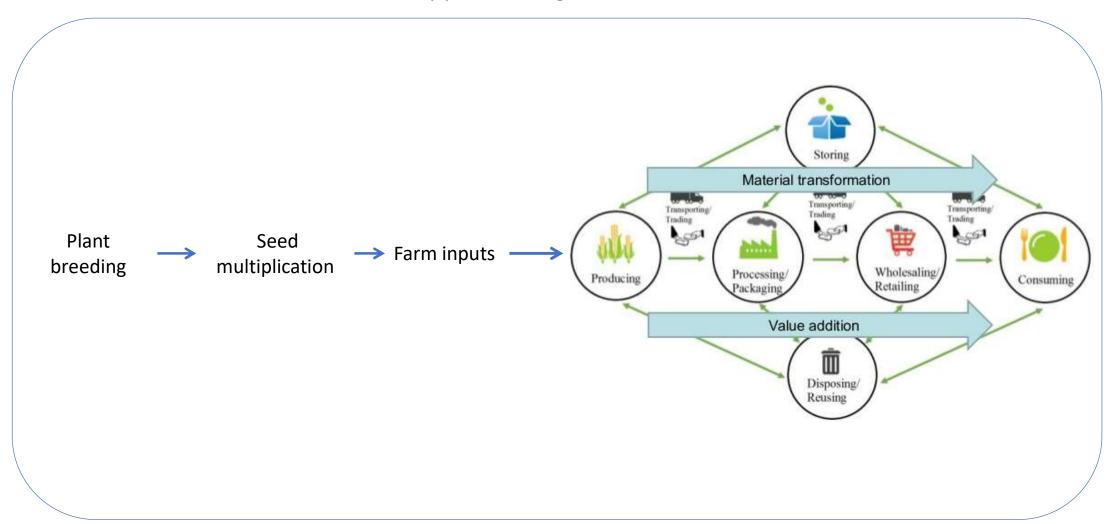
Changes in the average grain yield (t/ha) of wheat, pea and faba bean in the United Kingdom, 1961 to 2023




Changes in the ratio of wheat yield to the yield of pea and faba bean in the United Kingdom, 1961 to 2023

The competitiveness of wheat has increased from about 1.3 tonnes of wheat per tonne pea to about 2.5 tonnes wheat per tonne pea. The pattern for faba bean is similar

Changes in the yield (t/ha) of wheat and pea in Canada and Germany, 1961 to 2023



Why does trade happen?

Read David Ricardo

Trade happens along the value chain

Changes in protein and metabolisable energy (ME) production of grain legumes, wheat and barley in the EU 28 as affected by eight legume production scenarios.

Scenario	Description	Protein production (million tonnes)	Energy (million GJ)	Protein change: soybean equivalents (million tonnes)	ME change: wheat equivalents (million tonnes)	Change in nitrogen fertiliser requirements (million tonnes)		
	Baseline	23.79	2,874			10.77		
1.	3x	23.96	2,726	+0.51	-10.83	-0.71		
2.	3x-SFB	24.33	2,748	+1.62	-9.26	-0.71		
3.	3x-PCE	24.51	2,794	+2.12	-5.88	-0.61		
4.	3x-SFB-PCE	24.88	2,815	+3.21	-4.31	-0.61		
5.	5x	24.71	2,565	+2.71	-22.72	-0.93		
6.	5x-SFB	25.46	2,607	+4.89	-19.58	-0.93		
7.	5x-PCE	25.93	2,714	+6.28	-11.73	-0.71		
8.	5x-SFB-PCE	26.68	2,757	+8.47	-11.69	-0.71		

Economic, environmental, and production effects of changing reference rotations to legumesupported rotations.

	Study area; reference rotation	Rotation with legume	GM (stan- dard)	GM (feed value)	GM (sub- sidies)	GM (CO2- tax)	N fertil- izer use	N ₂ O emis- sions	Nitrate leach- ing	Bio- diver- sity	Yield stabil- ity	Protein yield	Energy yield
m	Central East Europe									- 1000000			
	BG, BG 31; WW-GM-SF	BG 31#1: FP-WW-GM-SF	-22%	-5%	-14%	-22%	-28%	-24%	-16%	-2%	0p.p.	+4%	-10%
		BG 31#2: WW-SF-FP-GM	-17%	+1%	-12%	-15%	-29%	-23%	-11%	0%	0p.p.	+1%	-13%
	BG, BG 32; WOR-WW-SF-GM	BG 32#1: SY-WW-SF-WW	-2%		+2%	+1%	-54%	-45%	-13%	+16%	-6p.p.	0%	-25%
	BG, BG 33; WOR-WW-SF-GM	BG 33#1: CB-WW-SF-WW	-112%	115	-107%	-118%	-5%	+1%	+84%	+18%	-6p.p.	-23%	-37%
	RO, RO 11; GM-WW	RO 11#1: GM-WW-SY	-4%		+23%	+1%	-37%	-31%	-8%	+4%	+3p.p.	+13%	-16%
	RO, RO 21; GM-SF-WW	RO 21#1GM-WW-SY	+12%		+25%	+13%	0%	+8%	+21%	-6%	-1p.p.	+44%	+6%
	RS, RS 12; GM-WW	RS 12#1: GM-WW-SY	+70%			+78%	-19%	-7%	-11%	+3%	0p.p.	+57%	+8%
	UA, Kyiv oblast; GM-SF-WW	UA #1: GM-SY-SF-WW	+5%			+6%	-20%	-12%	+11%	-1%	0p.p.	+16%	-11%
	Central West Europe												
systems	AT, AT 11; GM-GM-WW	AT 11#1: SY-WW-GM	+56%			+68%	-41%	-31%	-2%	+10%	-5p.p.	+24%	-19%
	AT, AT 12; GM-WW-SF	AT 12#1: GM-WW-SY	+7%			+9%	-16%	-6%	+32%	-1%	0p.p.	+39%	-3%
3	DE, DE 11; WW-WB-WT	DE 11#1: WW-WB-FP-WT	-21%	+1%	+23%	-19%	-29%	-24%	-12%	-6%	+2p.p.	-3%	-13%
	DE, DE 11; SU-WW-WB-GM	DE 11#2SU-WW-WB-FB	-35%	-20%	-13%	-36%	-38%	-20%	+79%	+8%	+2p.p.	0%	-15%
Buddan	DE, DE 13 (Kies); GM-GM-WW-WOR	DE 13#1: GM-GM-SY-WW-WOR	-13%		+10%	-11%	-22%	-19%	-1%	+5%	0p.p.	+7%	-11%
	DE, DE 13 (Löss); GM-GM-WW-WOR	DE 13#2: GM-GM-SY-WW-WOR	-8%		+2%	-7%	-22%	-18%	+2%	+6%	0p.p.	+8%	-10%
	DE, DE 40 (soil type 2); WW-WB-WOR	DE 40#1: WW-FP-WW-WB-WOR	-14%	-5%		-13%	-23%	-19%	-18%	+1%	+1p.p.	+3%	-13%
		DE 40#2: WW-SY-WW-WB-WOR	-4%			-2%	-23%	-19%	-14%	+2%	-1p.p.	+12%	-5%
	DE, DE 40 (soil type 3); WR-WR-WOR	DE 40#3: WR-FP-WR-WOR	-15%	-5%		-14%	-27%	-21%	-17%	-1%	+1p.p.	+5%	-8%
	DE, DE 40 (Soil type 3), WK-WK-WOK	DE 40#4: WR-L-WR-WOR	-16%	-11%		-15%	-27%	-21%	-15%	-2%	-2p.p.	+10%	-9%
	DE, DE 73; WOR-WW-WW-SB	DE 73#1: WOR-WW-FP-WW-SB	-24%	-6%	+20%	-25%	-21%	-17%	-16%	-1%	-1p.p.	+6%	-7%
	North-West Europe												
	GB, UKM 7; WOR-WB-WO-SB-WB	UKM 7#1: WOR-WB-WO-FP-WB	0%	+4%		+2%	-30%	-23%	-24%	-1%	-1p.p.	+10%	-3%
		UKM 7#2: WOR-WB-WO-FB-SB	+1%	+6%		+3%	-26%	-25%	-28%	0%	-1p.p.	+16%	-6%
	IE, IE 05, IE, 06; WB-WO-WW-WB-WOR-WW	IE 05, 06#1: WB-WO-WW-FB-WW	-7%	+17%	+4%	-6%	-22%	-19%	-23%	-2%	-2p.p.	+14%	-2%
	IE, IE 05, IE, 06; SMB-SO-SFB-SMB-SMB	IE 05, 06#2: SMB-FB-SO-SFB-SMB	+7%	+43%	+24%	+10%	-20%	-14%	-8%	-3%	-2p.p.	+25%	-4%
	Southern Europe												
	IT, ITH 4; GM-GM-GM	ITH 4#1: GM-SY	+93%		+105%	+134%	-54%	-63%	-30%	+24%	-2p.p.	+35%	-20%
un	Central West Europe												
	DE, DE 40; WW-WR-SM-SM-SM	DE 40#5: WW-WR-AF-AF-AF	-14%			-12%	-72%	-31%	-63%		+1p.p.	+55%	-13%
1	North-West Europe					of the same							1.670
75		UKM 9#1: GC-GC-GC-WW	+108%			+140%	-25%	-13%	+22%			+10%	+5%
		UKM 9#2: GC-GC-GC-SB-FP/SB-WW	+70%			+95%	-36%	-20%	+39%			-7%	-7%
1		UKM 9#3: GC-GC-GC-SB-FP-WW	+64%			+88%	-36%	-21%	+33%			-5%	-7%
,	GB, UKM 9; GR-GR-GR-SB	UKM 9#4: GC-GC-GC-SB-FB-WW	+133%	+159%		+172%	-38%	-25%	+30%			-5%	-11%
Forage cropping systems		UKM 9#5: AF-AF-AF-SB	-96%	100/0		-97%	-87%	-61%	-36%			-19%	-29%
		UKM 9#6: WW-GC-GC-SB	+66%			+88%	-23%	-12%	+51%			-19%	-29%

Notz et al., 2023, Transition to legume-supported farming in Europe through redesigning cropping systems. Agronomy for sustainable development

Growing degree days to maturity for winter wheat and soybean

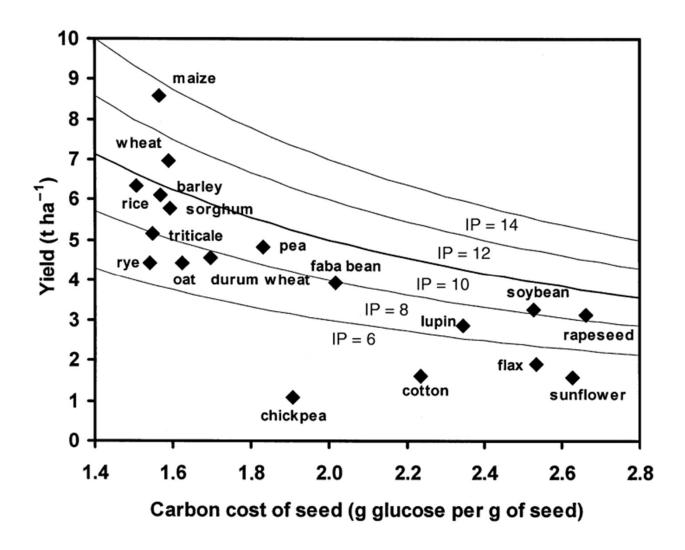
Maturity group (MG)

Growing degree days (base 10°C)

Winter wheat:

1800 - 2200 (base 0°C 1300 - 1600 (base 5°C)

1000 - 1300 (base 10°C)


A 25-30% variation in progress to maturity in wheat

200+% variation in soybean

OO I II III IV V VI VII VIII IX

X

000

Relationship between carbon cost of seed production for many species (<u>Sauvant et al. 2002</u>) and their yield (<u>http://epp.eurostat.cec.eu.int</u>; <u>http://faostat.fao.org</u>). In order to compare crop production performances, various isoproduction curves (IP), expressing the product of the energy cost of 1 g of seed by the yield, have been indicated.

Munier-Jolain and Salon

Characterisation of European legume crops

European agricultural legumes (Faboideae)

Defined by the flower shape

Generally characterised by:

Biological nitrogen fixation

Indeterminate growth

Relatively low dry matter and nitrogen harvest indices

Visited by pollinators

Mostly self-pollinated, thus in-bred

Pods

Toxic or anti-nutritional compounds in raw seeds

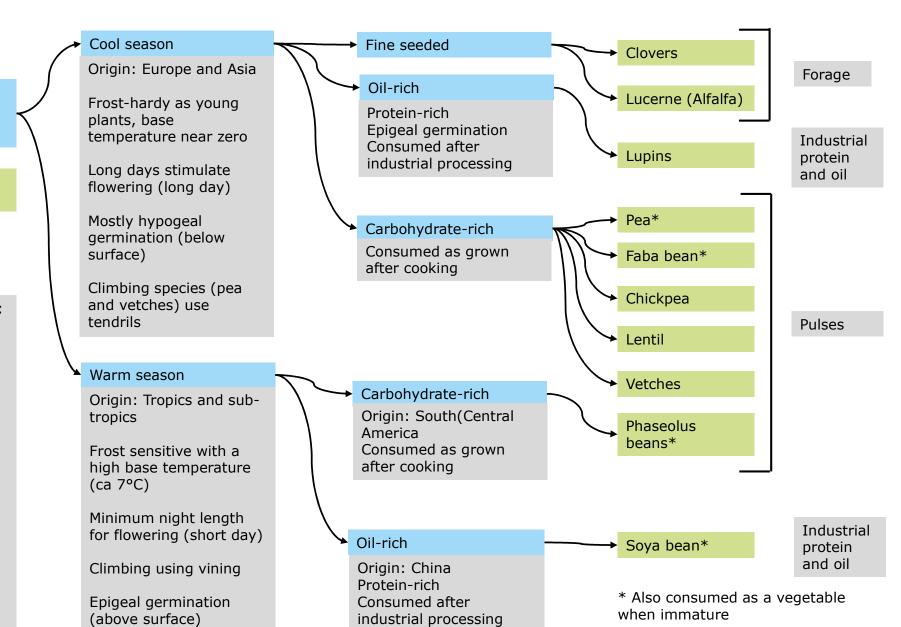


Photo: Fred Eickmeyer

The top ten legume crops

Faba bean

Photo: Carola Blessing, The Legume Hub

Pea

Photo: AgroBioInstitute (Bulgaria), The Legume Hub

Photo: Carol Blessing, LTZ Semi-leafless pea

Soya bean

Lupins

Photo: Moritz Reckling, ZALF

Chickpea

Photo: Donal Murphy-Bokern

Lentil

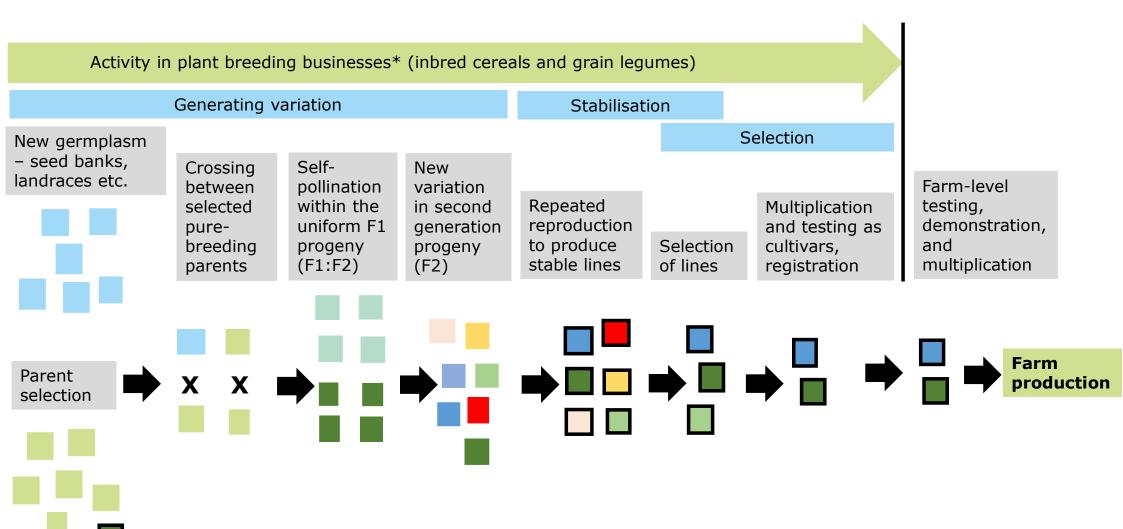
Photo: Elizabeth Ninou

Phaseolus beans

Michigan Dry Bean Classes

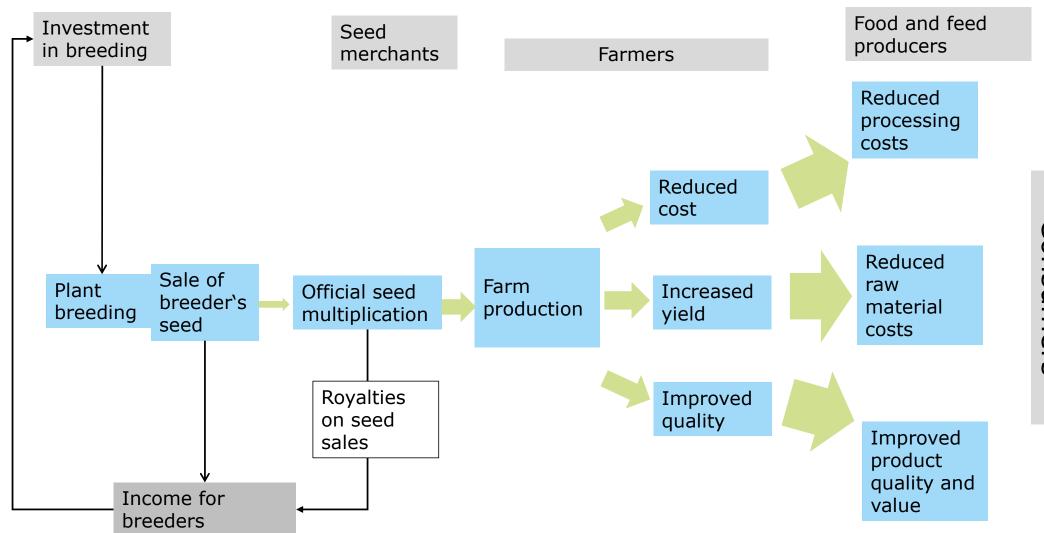
Vetches

Photo: Thuenen Institute


Lucerne

Photos: Bernadette Julier, INRAE

Clovers



Existing elite cutivars

^{*} Breeding businesses here includes cultivar testing organisations who provide cultivar data for registration. These are public organisations in most countries.

Consumers

The generation and distribution of value from plant breeding

Euphytica 17 (1968): 385-403

THE BREEDING OF CROP IDEOTYPES

C. M. DONALD

Waite Agricultural Research Institute, The University of Adelaide, South Australia

Received 17 November, 1967

SUMMARY

Most plant breeding is based on "defect elimination" or "selection for yield". A valuable additional approach is available through the breeding of crop ideotypes, plants with model characteristics known to influence photosynthesis, growth and (in cereals) grain production. Some instances of the successful use of model characters of this kind are quoted.

Priority 1 Breeding for yield

Fundamental rather than incremental change needed

Extending the growing season – frost tolerance

Harvest index

Canopy function

Groundbreaking ideas

We must focus on crop productivity

'Resource capture'

Euphytica 17 (1968): 385-403

THE BREEDING OF CROP IDEOTYPES

C. M. DONALD

Waite Agricultural Research Institute, The University of Adelaide, South Australia

Received 17 November, 1967

SUMMARY

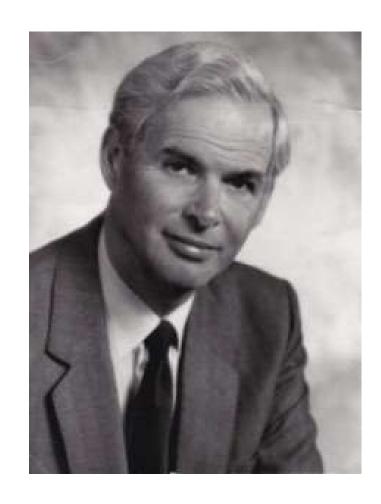
Most plant breeding is based on "defect elimination" or "selection for yield". A valuable additional approach is available through the breeding of crop ideotypes, plants with model characteristics known to influence photosynthesis, growth and (in cereals) grain production. Some instances of the successful use of model characters of this kind are quoted.

Research & Impact Publications Careers & Study News & Events HP3 About us

HOME / RESEARCH & IMPACT / OUR STRATEGIC RESEARCH PROGRAMMES / HARNESSING BIOSYNTHESIS FOR SUSTAINABLE FOOD AND HEALTH (HBIO) / CASE STUDIES & IMPACT (HBIO) / PEAS / THE HISTORY OF PEA RESEARCH AT THE JOHN INNES CENTRE / PEA GRAND DESIGNS; CHANGING PEA PLANT ARCHITECTURE

Pea grand designs: changing pea plant architecture

RELATED PAGES


- Germplasm Resource Unit (GRU)
- The history of plant science and microbial science at the John Innes Centre

In the late 1960s, many vining pea crops were being bypassed by the harvesters because of the slow throughput of the harvesting machinery.

Throughout Europe there was a demand for crops with acceptable yields but less stalks and stems. In response to this, a research programme was initiated at the John Innes Institute in 1969, led by Brian Snoad, to Investigate stalk and stem reduction and modification.

Snoad and his team began cross-breeding two known genes (capable of producing this morphological change) into cultivar pea types. The *af* gene replaces leaflets with branching tendrils, and the *st* gene (first observed in 1923 by scientists Pellew and Sverdrup at the John Innes Institute) greatly reduces the size of leaf-like appendage on leaves, called stipules.

Read John Monteith

Breeding for climate change

How does climate change affect plants

These are annual plants: climate and weather

Warmer or colder?

Drier or wetter?

Breeding targets (traits) for climate change

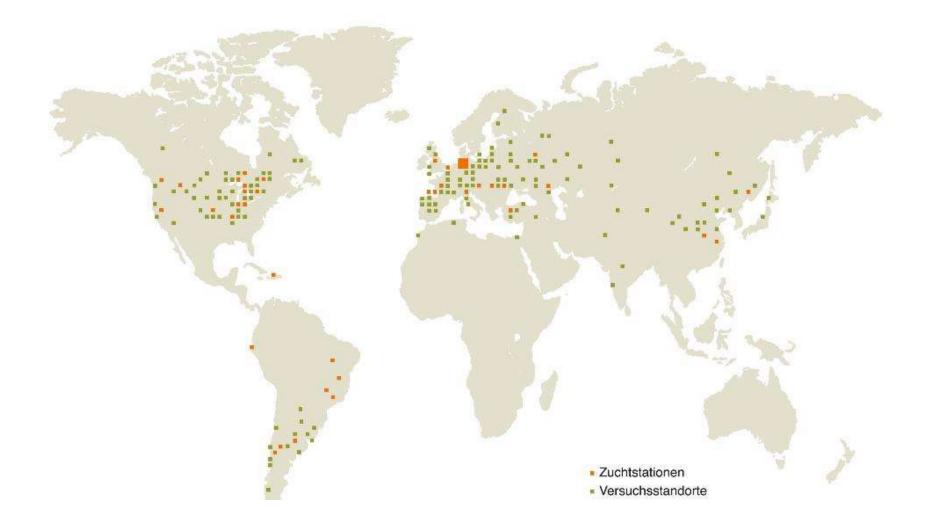
Timing of harvest – earlier or later

Insensitivity to long days

Early growth and vigour under cool conditions: lower base temperature

Tolerance of summer chilling

Tolerance and survival of heat stress


Tolerance of drought and water-logging

Very significant trade-offs between traits relevant to climate change

Breeding for climate change

Züchtungs- und Vertriebsaktivitäten der KWS Gruppe in über 70 Ländern

KWS

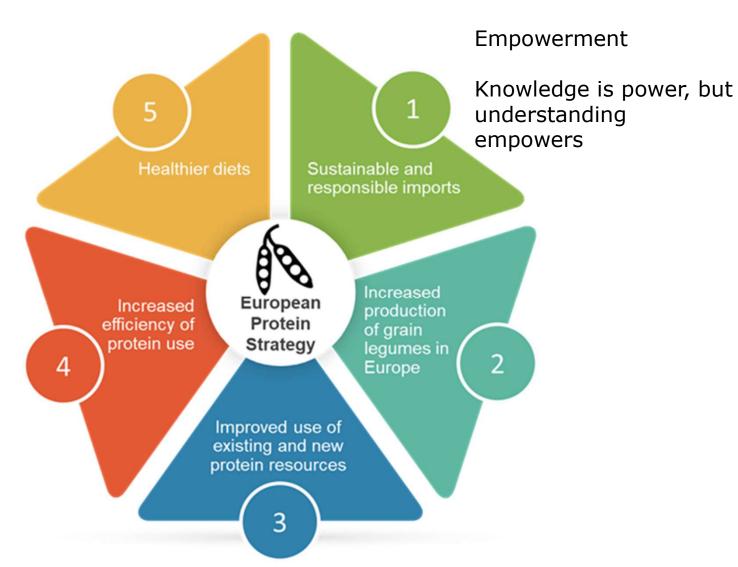
Participatory breeding

Participatory plant breeding

and

Participatory varietal selection

Donau Soja Protein Strategy for Europe


Taking responsibility

Short term: Sustainable

imports and consumption

Medium term: Agricultural innovation and policy

Long term: Breeding and value chain infrastructure

We need deep long-term partnerships Parent selection

Experiments

3 year cycle

Grant applications

papers

Institute-level and investors' strategies 10 year+

Academic

Innovation Communities

10 year+

1 - 3 year cycle

Selection

Crossing

Commercial and breeding programme strategies 10 year+

About us Our projects Our contributors News

EN DE

Livestock ~

Images

Join us

Login

Europe's knowledge platform for legumes

Search

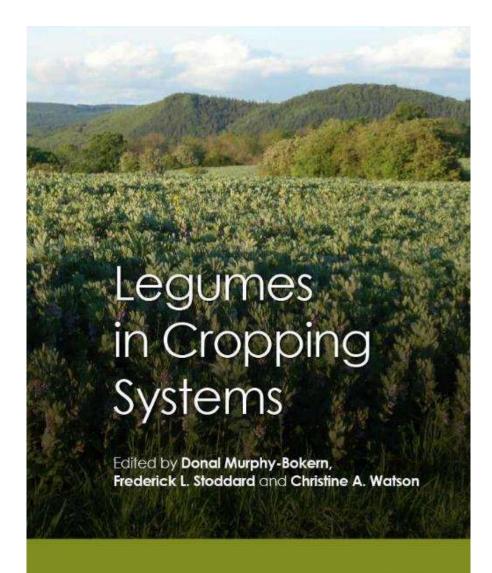
Sowing time for soybean

Timely sowing is important for successful soybean production. Timely sowing gives the best combination of cultivar, the length of daylight (latitude and calendar date), and soil temperature and moisture at planting depth. This enables rapid development and growth of young plants before floral induction, providing the foundatio...

Leopold Rittler, Olga Bykova

Feeding quality of pea for poultry

This note gives an overview of the components and feed value of field pea. Pea (Pisum satirum L.) is rich in protein and energy. Pea complements cereal in the feed ration because of the high content of lysine. The feed value of pea for poultry is determined by the metabolisable energy for poultry and the digestibility of the amino acids. Depending o...


Ulrich Quendt

Cultivation of white lupin

White Jupin (Lupinus albus) is a different botanical species to narrow-leaved or "blue" lupin (Lupinus angustifolius). It tolerates heavier soil and has a higher yield potential, but does not ripen until August/September. Important cultivation practices include the use of healthy, certified seed, sowing as early as possible and using the right ...

Christine Arnoken, Matthias Klaiss, Marina Wendling and

DOI: 10.1111/aab.12764

OPINION

Developing legume-supported cropping systems in Europe: Have we overlooked something?

Donal Murphy-Bokern @

Kroge-Ehrendorf, Lohne, Germany

Correspondence

Donal Murphy-Bokern, Kroge-Ehrendorf, 49393 Lohne, Germany.

Email: donal@murphy-bokern.com

Abstract

Why are legume crops rare in Europe even though they grow well there? This opinion paper brings together concepts from crop physiology, classical economics and sociotechnical theory to address this question. It argues for increased focus on research and innovation on crop performance. The starting point is that trade policy no longer explains the marginalisation of legumes. A more recent premise that mutually supporting social, technical and agricultural factors have combined over time to establish and maintain the current cropping systems is also incomplete. However,

Project consortium partners

Donal Murphy-Bokern

RAGT

24 EU-funded partners

33 partners to the consortium agreement

UNIVERSITÀ POLITECNICA

Germinal

UNIVERSITY OF HOHENHEIM

Legume Generation (Boosting innovation in breeding for the next generation of legume crops for Europe) has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No.101081329. It also receives support from the governments of the United Kingdom, Switzerland and New Zealand.